llmcompressor.observers.mse
MovingAverageMSEObserver
Bases: Observer
Implements a dynamic quantization observer that sets the scale and zero point based on a moving average of the mse-clipped min and max observed values
Source code in llmcompressor/observers/mse.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
|
calculate_mse_min_max(observed, reduce_dims=None, global_scale=None)
Computes the mse-clipped min and max values of the observed tensor by optimizing for quantization error
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observed | Tensor | observed tensor to calculate quantization parameters for | required |
reduce_dims | Optional[Tuple[int]] | optional tuple of dimensions to reduce along, returned values will be shaped (1,) along the reduced dimensions | None |
global_scale | Optional[Tensor] | optional scale to further scale local quantization scales | None |
Returns:
Type | Description |
---|---|
tuple of min and max values derived from the observed tensor |
Source code in llmcompressor/observers/mse.py
calculate_qparams(observed, reduce_dims=None, tensor_id=None, global_scale=None)
Updates the mse-clipped min and max values of the observed tensor using a moving average smoothed by the averaging_constant
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observed | Tensor | observed tensor to calculate quantization parameters for | required |
reduce_dims | Optional[Tuple[int]] | optional tuple of dimensions to reduce along, returned scale and zero point will be shaped (1,) along the reduced dimensions | None |
tensor_id | Optional[Any] | Optional id if different ranges of observed tensors are passed, useful for sharding tensors by group_size | None |
global_scale | Optional[Tensor] | optional scale to further scale local quantization scales | None |
Returns:
Type | Description |
---|---|
Tuple[FloatTensor, IntTensor] | tuple of scale and zero point derived from the observed tensor |
Source code in llmcompressor/observers/mse.py
calculate_updated_min_max(observed, reduce_dims=None, tensor_id=None, global_scale=None)
Updates the mse-clipped min and max values of the observed tensor using a moving average smoothed by the averaging_constant
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observed | Tensor | observed tensor to calculate quantization parameters for | required |
reduce_dims | Optional[Tuple[int]] | optional tuple of dimensions to reduce along, returned scale and zero point will be shaped (1,) along the reduced dimensions | None |
tensor_id | Optional[Any] | Optional id if different ranges of observed tensors are passed, useful for sharding tensors by group_size | None |
global_scale | Optional[Tensor] | optional scale to further scale local quantization scales | None |
Returns:
Type | Description |
---|---|
Tuple[FloatTensor, IntTensor] | updated min and max values derived from the observed value |